3.1.85 \(\int \text {csch}^2(e+f x) (a+b \sinh ^2(e+f x))^{3/2} \, dx\) [85]

Optimal. Leaf size=204 \[ -\frac {a \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}-\frac {(a+b) E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {2 b F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(a+b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{f} \]

[Out]

-a*coth(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/f-(a+b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+e)^2)^(1/2)*EllipticE
(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/f/(sech(f*x+e)^2*(a+
b*sinh(f*x+e)^2)/a)^(1/2)+2*b*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)/(1+sin
h(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)
^(1/2)+(a+b)*(a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)/f

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3267, 485, 545, 429, 506, 422} \begin {gather*} \frac {2 b \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {(a+b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(a+b) \tanh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}-\frac {a \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csch[e + f*x]^2*(a + b*Sinh[e + f*x]^2)^(3/2),x]

[Out]

-((a*Coth[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/f) - ((a + b)*EllipticE[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e
 + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + (2*b*EllipticF[Ar
cTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[
e + f*x]^2))/a]) + ((a + b)*Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x])/f

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 485

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[c*(e*x)^(
m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)
*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*(c*b - a*d)*(m + 1) + c*n*(b*c*(p + 1) + a*d*(q - 1)) + d*((c*b - a*
d)*(m + 1) + c*b*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0]
 && GtQ[q, 1] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 3267

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[x^m*((a + b*ff^2*
x^2)^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !In
tegerQ[p]

Rubi steps

\begin {align*} \int \text {csch}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2} \, dx &=\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \sqrt {1+x^2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac {a \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}+\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {2 a b+b (a+b) x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac {a \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}+\frac {\left (2 a b \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{f}+\frac {\left (b (a+b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac {a \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}+\frac {2 b F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(a+b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{f}-\frac {\left ((a+b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac {a \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}-\frac {(a+b) E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {2 b F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(a+b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.74, size = 155, normalized size = 0.76 \begin {gather*} -\frac {a \left (\sqrt {2} (2 a-b+b \cosh (2 (e+f x))) \coth (e+f x)+2 i (a+b) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} E\left (i (e+f x)\left |\frac {b}{a}\right .\right )-2 i (a-b) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} F\left (i (e+f x)\left |\frac {b}{a}\right .\right )\right )}{2 f \sqrt {2 a-b+b \cosh (2 (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csch[e + f*x]^2*(a + b*Sinh[e + f*x]^2)^(3/2),x]

[Out]

-1/2*(a*(Sqrt[2]*(2*a - b + b*Cosh[2*(e + f*x)])*Coth[e + f*x] + (2*I)*(a + b)*Sqrt[(2*a - b + b*Cosh[2*(e + f
*x)])/a]*EllipticE[I*(e + f*x), b/a] - (2*I)*(a - b)*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticF[I*(e +
f*x), b/a]))/(f*Sqrt[2*a - b + b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]
time = 1.14, size = 243, normalized size = 1.19

method result size
default \(\frac {-\sqrt {-\frac {b}{a}}\, a b \left (\cosh ^{4}\left (f x +e \right )\right )+\left (-\sqrt {-\frac {b}{a}}\, a^{2}+\sqrt {-\frac {b}{a}}\, a b \right ) \left (\cosh ^{2}\left (f x +e \right )\right )+\sinh \left (f x +e \right ) \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, b \left (\EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a -\EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b +\EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a +\EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b \right )}{\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}\, \cosh \left (f x +e \right ) \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}\, f}\) \(243\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(f*x+e)^2*(a+b*sinh(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

(-(-1/a*b)^(1/2)*a*b*cosh(f*x+e)^4+(-(-1/a*b)^(1/2)*a^2+(-1/a*b)^(1/2)*a*b)*cosh(f*x+e)^2+sinh(f*x+e)*(cosh(f*
x+e)^2)^(1/2)*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*b*(EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a-Ellipti
cF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b+EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a+EllipticE(sin
h(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b))/sinh(f*x+e)/(-1/a*b)^(1/2)/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)^2*(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sinh(f*x + e)^2 + a)^(3/2)*csch(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.10, size = 46, normalized size = 0.23 \begin {gather*} {\rm integral}\left ({\left (b \operatorname {csch}\left (f x + e\right )^{2} \sinh \left (f x + e\right )^{2} + a \operatorname {csch}\left (f x + e\right )^{2}\right )} \sqrt {b \sinh \left (f x + e\right )^{2} + a}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)^2*(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral((b*csch(f*x + e)^2*sinh(f*x + e)^2 + a*csch(f*x + e)^2)*sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)**2*(a+b*sinh(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)^2*(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{64,[4,6,4]%%%}+%%%{%%%{-128,[1]%%%},[4,6,3]%%%}+%%%{%%%{
64,[2]%%%},

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a\right )}^{3/2}}{{\mathrm {sinh}\left (e+f\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sinh(e + f*x)^2)^(3/2)/sinh(e + f*x)^2,x)

[Out]

int((a + b*sinh(e + f*x)^2)^(3/2)/sinh(e + f*x)^2, x)

________________________________________________________________________________________